where K(k) and E(k) are complete elliptic integrals of respectively
first and second kind, and the modulus k is defined by

k = /T-a4/b?% . (37)

For convenience a table giving the elliptic integrals (Table 4) is
included in this report where the angle o is related to k by sina=k.
Further results for col linear cracks under Mok Il loading condition
are given in Table 5. In these results the half crack length (b-a)/2
is used in normalizing stress intensity factor. (a/b) = 0 and
(a/b) = 1 correspond to the two limiting cases of a single crack of
length 2b and b-a, respectively. A expected ky(a) becomes unbounded
for a 4 and both k,(a) and k](b) approach the corresponding single
crack value for (a/b)~1 (i.e., for a—). An interesting result observed
in Fig. 46 and Table 5, however, is that generally for smaller plate
thicknesses as a approaches zero the stress intensity factor kq(a)
goes through a minimum before becoming unbounded. This reduction is
apparently due to the interaction of the stress fields of the two cracks
as the distance 2a decreases. For example, from Fig. 47 it may clearly
be seen that even though the cleavage stress 022(x1,0) perpendicular
to and on the line of the crack is tensile near the crack and becomes
unbounded at the crack tip, it becomes compressive in a certain interval
avay from the crack. This is largely due to the "bending" effect of
the two halves of the plate. Thus after the interaction of stress fields
of the two cracks it is seen that the inner crack tips would be in
compressive region and consequently there would be some decrease in
the stress intensity factor.

4.4 Collinear Cracks Perpendicular to the Boundary

From a viewpoint of interaction between two cracks or between
cracks and free boundaries another geometry of great deal of practical
interest is that of collinear cracks perpendicular to the plate boundary
described in Fig. 48. A special case of this problem is the two surface
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Table 5. Stress intensity factors in an orthotropic
strip containing two identical collinear cracks
loaded by uniform crack surface pressure p
or shear q; Hy=Ho=H, «=1, Hs/(b-a)/2 = 0.4.
T99(%y50)=-p 912(xy50)=-q
2a kq(b) ky(a) ko (b) ky(a)
7| pdsyh P22 | g% bsay%
0 9.376 © 2.629 o
.01 3.6%3 6.996 2.106 5.837
. 3.788 2.837 1.952 2.300
.2 3.962 3.113 1.935 1.989
.3 4.074 3.642 1.933 1.939
.4 4.124 3.971 7.933 1.933
.5 4.138 4.103 1.933 1.932
.6 4.141 4.138 1.933 1.933
.7 4.140 4.143 1.933 1.933
.8 4.140 4.142 7.933 1.933
.9 4.139 4.140 1.933 1.933
1 4.139 4.140 1.933 1.933
2 4.142 4.142 1.933 1,933
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cracks simulating weld defects on both surfaces.

Some sample results for the stress intensity factors k(a) and
k(b) for two symmetrically located collinear cracks are given in
Table 6. Fig. 49 shows the results for two (collinear) surface cracks.
For very shallow surface cracks (i.e., for a»h), as seen from the
figure k(a) approaches the stress intensity factor in a semi-infinite
plane containing an edge crack of depth 2a_, namely

k(a) ~ 1586 o /a; . (38)

In the other limiting case for which a+0, k(a) approaches the stress
intensity factor in a symmetrically loaded infinite plane containing

Table 6. Stress intensity factors for collinear internal
cracks in a strip (Figur: 1, a, =(b-a)/2).

a/h | bin | x(a) | K(b)
S 95v3g
0 0.4 (+ =) 1.5690
0.1 | 0.5 1.1746 | 1.1169
0.2 | 0.6 1.1102 | 1.0961
0.4 | 0.8 1.0984 | 1.1250
0.5 | 0.9 1.1290 | 1.2278
0.6 | 1.0 1.6080 | (» =)

0 0.8 (+ =) 2.5680
0.1 | 0.9 1.6730 | 1.7451
0.2 | 1.0 2.1769 | (> =)

0.5 0.95 1.1960 1.4711
0.5 | 0.98 1.2713 1.9008
0.5 1.0 1.6228 (+ =)
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Figure 46. Stress intensity factors for two collinear cracks in an
orthotropic strip.
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two edge cracks. In this case, if the resultant force perpendicular
to the cracks is P, and the length of the net Tigament is 2a, it can be
shonn that the stress state in the net ligament is given by

_P _

ny(.xao) = tva<-x ’ UX)’<X’O) =0 . (39)
Thus, by observing that

P = 2ho, = 2ao, (40)
and

k(a) = lim v2(a-x) cyy(x,O) , (41)

X-a
ve obtain
_ 2
k(a) —; O-l /a_ . (.42)

These two limiting results are also shown in Fig. 49.

5. INTERACTION BETWEEN FLAT INCLUSIONS AND CRACKS

Fev unusual results aside, the problem of interaction between two
cracks is relatively well-understood in the sense that the resulting
stress field or the stress intensity factors would either be amplified
or reduced as the distance between the cracks decreases. Almost in all
cases the qualitative nature of the result could be predicted intuitively.
For example, if the cracks are parallel then they would be in each
other’s shadow and there would be a reduction in the stress intensity
factors. On the other hand if the cracks are co-planar then one would
expect an amplification in the stress intensity factors, The exception
or the unusual result in this case is the reduction in the stress
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Figure 48. Infinite strip with two internal cracks.
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Figure 49. The stress intensity factor for the edge cracks in an
infinite strip (o; = oeh/a ).
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intensity factors at the inner crack tips for certain relative crack
locations in plates with relatively smaller thicknesses. Some specific
problems relating to interaction between cracks were discussed in the
previous sections.

Intuitively what is not as well understood is the problem of inter-
action between cracks and flat inclusions. Separately both flaws have
singular stresses and consequently are locations for potential fracture
initiation. However, the inclusions are also "stiffeners"™ and therefore,
properly oriented, they should tend to arrest crack propagation. For
this reason in this study it is found to be worthwhile to undertake a
detailed investigation of the problem on which the technical literature
seems to be extremely weak. Particularly interesting in this problem
is the behavior of the stress state around the ends of the inclusions
and at the points of intersection between inclusions and cracks. The
details of the analysis of this crack-inclusion interaction problem and
very detailed results are given in Appendix A of this report.

6. PLANAR CRACKS OF FINITE SIZE

Referring to Fig. 50 which is reproduced from APl Standard 1104
and which describes a set of empirical rules regarding the interaction
between planar cracks it may be seen that somewhat more quantitative
results are needed. The general method to provide such results is
described in Appendix B of this report. The appendix gives the results
only for a single internal crack. However, the method is general and
will be used for the interaction of coplanar surface cracks, and
coplanar internal cracks located parallel or in series.
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PART II
MECHANSVE OF GORROAON FATIBLE N PIPELINE STEELS

In this part, the initial results of studies, designed for develop-
ing mechanistic understanding of corrosion fatigue, are described. These
studies provide the scientific bases for guiding the development of
methodology for assessing safety and durability of pipelines in service,
and for guiding the development of improved materials and protection
systems. The results are not intended for use directly in design and
rule-making .

1. NIRCDUCTION

Transmission and distribution pipelines are exposed to a broad
range of chemical environments, both in terms of corrosive species that
are present in soils (such as carbonates, chlorides and nitrates) and
of deleterious species that may be transported within the lines (such
as hydrogen and ammonia, and hydrogen sulfide and water/water vapor as
impurities in natural gas and oil). These environments, acting in con-
cert with operating stresses (both static and cyclic stresses) and
residual stresses, can cause cracks to initiate and grow, and result in
subsequent fai lure (leakage or rupture). In addition to these external
environments, hydrogen that might be present in the steel (introduced
during fabrication, processing or field installation, or by corrosion
or cathodic charging during service) can also lead to cracking. Quanti-
tative information and understanding are needed, therefore, to assess
the safety and reliability of pipelines during service, and to guide in
the development of improved materials and protection systems.

Although a considerable amount of research has been devoted to the
problems of environmentally assisted cracking in pipeline steels, most
of this effort, however, has been directed to the study of stress cor-
rosion cracking (or cracking under static loading) and of corrosion per se.
For a range of reasons, quantitative understanding of the phenomenological
and mechanistic aspects of environmentally assisted cracking is yet to be
fully developed. Research during recent years, at Lehigh University and
elsewhere, has shown that environmentally assisted cracking results from
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the interaction of clean metal surfaces (produced by cracking or by de-
formation) with the environment, and that the very early stages (i.e., the
first few milliseconds to few seconds) of reactions are responsible for
the enhanced cracking. Fatigue (associated with cyclic loading from a
variety of sources), being a proficient mechanical process for creating
rew surfaces, acting in concert with corrosion, therefore, may be a more
serious failure mechanism than stress corrosion cracking.

The need to consider corrosion fatigue as a potentially significant
failure mechanism in pipelines is based on the recognition that the
operating pressure (Or stresses) do not remain truly constant and minor
fluctuations in stresses can significantly alter cracking response [1-4].
Indeed, it has been difficult to reconcile service failures and labora-
tory stress corrosion cracking data without allowing for the possibility
for corrosion fatigue [4,5]. To properly address the problems of corrosion
fatigue, it is essential to recognize the multi-faceted nature of the
phenomenon which reflects the synergism of chemistry/electrochemistry,
mechanics and metallurgy. The cracking response reflects both the nature
and the kinetics of chemical reactions between the environment and the
fresh crack surfaces, and the interactions of hydrogen that is produced
by these reactions with the microstructure [6]. Significant advances in
understanding and in placing corrosion fatigue analysis on a fundamentally
sound and quantitative basis depends on the understanding of the mechanisms
for and various processes that control corrosion fatigue.

2. PROGRAM OBECTIVE AND SCOPE

In this part of the program, a multi-disciplinary research is being
undertaken to investigate the mechanisms of corrosion fatigue crack
initiation and propagation in pipeline steels exposed to aqueous environ-
ments. The program is directed at (1) the development of quantitative
understanding of the early stage of chemical reactions in relation to the
crack initiation and propagation, (2) elucidating the mechanisms for
corrosion fatigue crack initiation and propagation, including the
influences of chemical, mechanical and metallurgical variables, and
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(3) the formulation and evaluation of models for predicting cracking
response and service performance. A combined fracture mechanics, sur-
face chemistry and material science approach is used.

The specific areas of research are as follows:

(1) Determination of the kinetics of passivation (viz., initial
reactions) as functions of temperature, pH, ion concentration, and other
factors.

(2) Determination of the kinetics of fatigue crack initiation as a
function of temperature for selected environmental conditions , and cor-
relation with the chemical data.

(3) Determination of the kinetics of fatigue crack propasation as
a function of temperature for selected environmental conditions, and
correlation with the chemical data.

(4) Examination of the influences of loading variables (such as
cyclic load frequency, waveform, and load ratio) on corrosion fatigue
crack initiation and propagation.

(5) Synthesis of chemical , mechanical and metallurgical data to
develop quantitative understanding of the mechanisms for corrosion fatigue
crack initiation and propagation. Formulation and verification of models
for predicting cracking response and service performance.

The research program is planned for a period of three (3) years, and
complements an ongoing study on the mechanisms for corrosion fatigue in
high-strength steels and titanium alloys sponsored by the Office of Naval
Research. Principal efforts during the first year are being directed to-
wards the measurements of the kinetics of passivation and of the kinetics
of fatigue crack growth in one electrolyte over a range of temperatures
from 10°C to 90°C. Cyclic load frequencies from 1072 to 10 Hr. will be
used for the fatigue crack growth experiments. X-70 steel (in plate
form) and 1IN Na,C0; = TN NaHCO, solution are used in these initial studies.
Other environments will be considered for later studies,

3. PROGRESS TO DATE

Because of the relatively late starting date of this program with
respect to Lehigh's academic calendar, a suitable graduate student wes
assigned at the beginning of the spring semester (that is, in January,

-79-



1983). Principal effort has been directed towards the exploration and
development of electrochemical measurement techniques for determining the
kinetics of passivation or surface reaction of clean surfaces. Studies
of the kinetics of corrosion fatigue crack growth in the X-70 steel have
been initiated also. The results are summarized briefly here.

3.1 Electrochemical Measurement Techniques

™o electrochemical measurement techniques are being considered.

The first one (the potential step technique) involves cathodically
polarizing a "clean" surface at a suitable potential in the electrolyte

of interest, suddenly switching to another potential, and monitoring the
current transient under potentiostatic conditions at the rew potential.

The second technique, proposed by Gunchoo Shim as a part of an ONR
sponsored program, measures the galvanic current between a cathodically
“cleaned" surface and a surface that has been "oxidized" in the electrolyte.
The current flow in each of these cases is expected to contain information
on the reactions of a clean surface with the electrolyte.

Since the second technique more closely simulates the reactions at
the crack tip, under open circuit conditions, further evaluation of this
technique is being made (in part by Professor WA in conjunction with
his sabbatical leave at EXXON Corporate Research Laboratories during the
1982-83 academic year). The essential elements of this technique are
illustrated in Fig. 1. Figure la illustrates the cleaning arrangement,
and Fig. 1b, the measurement configuration. Evaluation of the technique
was carried out using a borate solution, containing an equivolume mixture
of 0.15N Na,B,0,-10H,0 and 0.15N H,BO, solutions, with pH = 8.8 at room
temperature.

An idealized galvanic current transient is illustrated in Fig. 2.

The initial rapid decay represents dissipation of charges in the Helmholtz
(or double) layer formed during cathodic cleaning. The slower decay
represents charge transfer associated with the surface reactions. A
simple, linear relationship in log (current) versus time coordinates
would suggest a simple first order reaction of the Langmuir type, A
typical current transient for iron in a deaerated buffered borate
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solution (pH = 8.8) at room temperature is shown in Fig. 3. With
increases in test temperature, the current decay becomes more rapid and
IS consistent with the expected increase in the rates of reactions.

It is clear, however, that the processes are muh more complex.

To better understand the processes that might contribute to the
galvanic current transient, experiments were carried out using only
graphite electrodes, In a well-deaerated solution, the current decays
rapidly, Fig.-4. This rapid decay is consistent with the expected rapid
initial dissipation of the double layer. With the presence of dissolved
oxygen, dissipation of the double layer is followed by a muh slower
current decay, Fig. 5. This slower decay is believed to result from the
reduction of oxygen in solution. Other processes, such as the oxidation
of iron from Fet to Fe3+, are also expected to contribute to the current
flow.

Nevertheless, the results are very encouraging. Additional experi-
ments using gold electrodes in 3% MNaCl solution have been carried out
to attempt to identify the various reactions. Analysis of these data
are in progress. Measurements of the reactions of X-70 steel with
IN Na,C0; - TN NaHCO, solution will be made to correlate the kinetics
of these reactions to corrosion fatigue crack growth response.

3.2 Fatigue Crack Growth

Fatigue crack growth experiments have been carried out on X-70
steel in distilled water, under constant-K conditions at four temperatures
from about 20°C to 90°C (Fig. 6). The results clearly show the influence
of test frequency and temperature on the rate of corrosion fatigue
crack growth. The observed response is similar to that of HY130 steel
in distilled water [6]. A stronger temperature dependence for the
mechanical component of fatigue crack growth, however, is suggested hy
these data. Room temperature fatigue crack growth data, obtained in
IN Na,CO; - IN NaHCO, solution, are shown in Fig. 7. The result indicates
no effect of frequency over the range 0.03 to 10 Hz in this environment.
Additional tests at higher temperatures are in progress. The results
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will be correlated with the planned electrochemical measurements to
develop an understanding of corrosion fatigue crack growth response in
this steel.

4. PLANNED RESEARCH

Further development and evaluation of the electrochemical measurement
techniques and measurements of the kinetics of reactions of X70 steel
with TN Na,CO5 = TN NaHCO, and 3.5% NeQl solutions will be mede during
the coming year. Corrosion fatigue crack growth experiments will be
continued to assess the influences of frequency and temperature in the
same solutions.
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AFPENDIX A

THE CRACK-INCLUSION INTERACTION PROBLEM

1. Introduction

In studying the fracture of multi-phase materials, structures composed
of bonded dissimilar solids, and welded joints it is necessary to take into
account the effect of the imperfections in the medium. Generally such imper-
fections are in the form of either geometric discontinuities or material
inhomogeneities. For example, in welded joints various shapes of voids,
cracks, notches and regions of lack of fusion nmey be mentioned as examples
for the former and variety of inclusions for the latter. From the viewpoint
of fracture mechanics two important classes of imperfections are the planar
flaws which may be idealized as cracks and relatively thin inhomogeneities
which may be idealized as flat inclusions with "sharp" boundaries. In both
cases the edges of the defects are lines of stress singularity and, conse-
quently, regions of potential crack initiation and propagation.

The technical literature on cracks, voids and inclusions which exist
in the material separately is quite extensive. However, the problems con-
cerning the interaction of cracks, voids and inclusions do not seem to be
as widely studied (see, for example, [1] for the results of crack-circular
inclusion or void interaction problem and for some references). In this
paper the relatively simple problem of an elastic plane containing a crack
and an arbitrarily oriented flat elastic inclusion is considered. CF special
interest is the examination of the asymptotic stress field in the neighborhood
of inclusion ends and the problems of intersecting cracks and inclusions.

The basic dislocation and concentrated force solutions are used to formulate
the problem [2]. Hence, the formulation can easily be extended to study prob-
lems involving multiple cracks and inclusions.

2. Integral Equations of the Problem

The geometry of the crack-inclusion interaction problem under considera-
tion is shown in Figure 1. It is assumed that the medium is under a state of
plane strain or generalized plane stress and the in-plane dimensions of the
medium are large compared to the lengths of and the distance between the
crack and the inclusion so that the effect of the remote boundaries on the
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perturbed stress state may be neglected. Thus, the Green's functions for
the concentrated forces and dislocations in an infinite plane may be used to
formulate the problem. It is further assumed that the inclusion is suffi-
ciently "thin" so that its bending stiffness may also be neglected.

Referring to Figure 1 we consider the stresses and displacements, due to
a pair of edge dislocations on the x axis, a pair of concentrated forces on
the line e=constant and the applied loads acting on the medium away from the
crack-inclusion region. Let the subscripts d, p and a designate these three
stress and deformation states, i.e., let 94ij* Opij and %aij? (1,3) = (x,y)
or (i,j) = (r,8), be the stress components due to dislocations, concentrated
forces, and applied loads, respectively. The total stress state in the elas-
tic plane may, therefore, be expressed as

O'ij(x"y) = Gdij(x’y) + Upij(x"y) + Oaij(x’y)’ (i,j = XsY) (])

Let s now assume that the dislocations are distributed along a<x<b,
y=0 forming a crack. If g(x) and h(x) refer to the dislocation densities
defined by

= [uy(x,#0) - u (x,-0)] = g(x) , a<x<b ,

(2a,b)

537 [u (x,#0) - u (x,-0)] = h(x) , a<x<b ,

the corresponding stress components at a point (x,y) in the plane may be

expressed as b

six(x:3) = [ (B (xayst)a(t) + By (xoy,tIn(t)1ee

b

Gdyy(x"Y) = f [ny(xayst)g(t) + Hyy(X,y,t)h(t)]dt . (3a'C)

a
b
Sy = [ T (6y,8)a(t) + K Gy, tn(t)Tdt

a

Xy

where



xx = WZK+15 lz &2 ZIZ

t-x)[3y2 + (t-x)2

Y - m(x+]
- 2y t-x)2
xy  m{k+1) +y

(4a-f)

2 sz + 3§t-x§2|
HXX = WZK+15 ) t-x)¢ +y ?
_ 2 . {!zz - §t-x;2!
H Yy w(x+l) t-x)¢ + y >
WiK+]5 li ;2 2]2

In (4) uand x are the elastic constants of the medium, p the shear modulus,
k = 3-4v for plane strain and « = (3-v)/(1+v) for plane stress v being the
Poisson’s ratio.

Similarly, from the concentrated force solution as given, for example,
in [2] the stress components Onij = Sij due to a pair of forces Px and PY
acting at the point(xo, yo)nmy be written as

1 (A1+A2)Px + (B1+32)Py
2n(et1)  L(x-x)% + (y=y )e1=

1 (A-Ay)P, + (By-By )Py

Syy(X¥>Xe2¥o) = Bl Ty T, )2 + (79 )22

Sxx(x,y,xo,yo)

(5a-c)

1 A3Px * B3gy

Sxy{Xa¥ s Xga¥o) = Ty T0xe X2+ (y-y )°1%

I
)

1 = “2(x=x )[(x-x)2 + (y-y,)?]

I
N
]

= =e(x=x ) [(x=x )2 + (y-y )21 - (x-x )[(x-x,)2 - (y-y )2] + 2(y-y )2(x-x,)



By = -2(y-y ) l{x-x )% + (y-y )2]
By = +c(y=yg ) l{x=x )2+ (y-y,)21-(y-y J(x-x,)2=(y-y ) 21-2(x-x, )2 (y~y )
Ag = =x{y=y ) (x-x )2+ (y-y ) 21-(y-y ) [ (x-x ) 2= (y-y ) 2]-2(x-x,) 2(y-y )

By = —k(x=x ) [(x=-x )12+ (y=y )2 I+ (x=x ) [(x=x ) 2= (y=y ) 2]-2(y-y) 2(x-X,)

(6a~f)

If the inclusion is located along the line ¢ < r < d, e = constant, and
if its bending stiffness is neglected, then the following conditions are
valid:

ur(r,e+0) = ur(r,e-O), ue(r,e+0) = ue(r,e—O) .

-Pe(r,e) r,o+0) - oee(r,e-O) =0, (7a-d)

Ige'

—Pr(r,e) -p(r) = ore(r,e+0) - ore(r,e-o) » (c<r<d).
Thus, to formulate the problem it is sufficient to consider only the radial
component P..=p of the concentrated force. For Py=0 and P _=p observing that

P, =p cose , Py = p sine , (8a,b)

and substituting X, = TgC0s8, ¥, = r sine, by using the kernels Sij given

by (5) the stress components onij are found to be

] d (A] '+A2')cose+(B]'+BZ' Ysine
Opxx(X’Y) T 2n(HT) J I(X-roc05972+(y-rosine)2]2
c

d

p(ro)drO

1 A1"Az')COSG*‘(B]'-BZ')Sine
opyy(*¥) = ) f [(x-r cose)2+{y-r_sTns] 212 p(ryldry > (9a-c)
c

d 1 1as
A3 coss + B3 sing

_ 1
c;ny(x’y) © 2n(xHT) J [(x-r cose)Z+(y-r sine)Z]? p(ryldry »
c




where the functions As's By (i=1,2,3) are obtained from (6) by substituting

= = i e.qg.
Xq = r,c0S8 and Yo rosme, g.,

A '(xy,r,) = -2(x-r cose)[(x-r cose)? + (y-rosine)2] . (10)

Since the stresses %aij due to the applied loads are known, from (1),
(3) and (9) it is seen that once the functions g(x), h(x) and p(r) are deter-
mined the problem is solved. These unknown functions may be determined by
expressing the stress boundary conditions on the crack surfaces and the

displacement compatibility condition along the inclusion, namely

(x,0) + ¢ (x,0) + 0. (x,0) =0, (a<x<b),

oyy(%:0) = ogy, PYY ayy

°xy(x’o) = °dxy(x’0) + cpxy(x,o) + caxy(x,o) =0, (a<x<b), (11a-c)

i

Err(rQG) = Edr‘r(r’e) + Eprr(rse) + Earr‘(r’e) 81(1"), (C<Y‘<d)

where e].(r) is the (longitudinal) strain in the inclusion. If, for example,
the stress state anay from the crack inclusion region is given by a‘:
(i,j) = (x,y)» then the applied quantities in (11) may be expressed as

on

(x,0) = o> , 0.  (x,0) =0 ,

ayy yy * axy Xy
= e roe 2g - 37K <ip2
eqpp(r20) = 5. [o,y (cos2e - 37= sin?e)
g in2a = 2. 2 ] -
+ oYY(sm 6 = §3= cos2s) t 34 0y sin2e] . (12a-c)

V¥ now note that if p(r) is the body force acting on the elastic medium
then -p(r) would be the force acting on the inclusion distributed along its
length. Thus, the strain in the inclusion may be obtained as

Ty
SIOREE [ pergar, (13)
r




where u. and kg are the elastic constants, and A, is the cross-sectional
area of the inclusion corresponding to unit thickness of the medium in z-
direction. From the expression of .. given by the Hooke's law

R 3-k
rr - 8n (opp = T5 Tgg) » (14)

from (9) and the corresponding stress transformation it can be shown that
d
p(r_)
- K 0
Eprr(“e) = T T)n f e dr, - (15)
c

Similarly, from (3), (4) and (14) ve find

b
_ T4k
arr(T58) = B [ [6_(r,t)g(t) + H_(r,t)n(t)]at (16)
a
where
G (r,t) = - ]ZEK E-lq— {cos29~ %’_—E—sinze)(t-r cose) x

x[(t-rcoso)2-r2sin2g] + (sin2e- %_'-f cos2g) x

x(t-rcose)[3r2sin2e + (t-rcose)2]

t ]_f—K sin2e r sine[r2sin2e-(t-rcose)2]} , (17)
H (r,t) = H‘Z#zyﬁq {(cos?6- |z sin2e)r sine(r2sin2e

+ 3(t-rcose)2] + (sin2e- %—:— cos2g)r sine x

x[r2sinZe-(t-r2cos?e6)2] + TH sin2e6 x

x(t-rcose)[(t-rcose)? - r2sin2g] , (18)

R2 = (t-rcos6)2 + r2sinZg . (19)



Finally, by substituting from (3), (4), (9), (12), (13), (15) and
(16) into (11), the integral equations of the problem may be obtained as

follows :

b
lf g(t)dt , 1
t-x Amy

J (A]'-AZ')cose+(B]'-Bz')s1'ne I

p(ro)dro - - TUYY >

L(x- 2 1 a)272
T LA r,COSe) +(rosme) ]

(a<x<b)

lj h(t)dt 4 1 f A,'coss+B.'sing)p(r dr = - Lk o=
- A 2- r = 2
N t-X 4y 3 X-r cose r,sine ] 0 uoXy

(a<x<b) ,

c c r

ﬁje(quwa+—3fHwxqut+lPE%ddr

T £ T 5 T Y‘o r o}
a a C

yc_ d
-0 - --C 2q. in2a)
+ - JH(rO r)p(ro)dr0 = I? [(cos?s '?IS sin e)c?x
C

+ (sin2g- 13—4_5 cosze)o;y + He 0%y sin2e], (c<r«d) , (20a-c)

where

T+¢ )
- 11"1"‘1(22 - U( s
% 4 > Y Asus T+ : (21a,b)

From the definition of g and h given by (2) it follows that

f g(t)dt = 0 f h(t)dt =0 . (22a,b)
a a

Also, the static equilibrium of the inclusion requires that
d
Jp(r)dr =0 . (23)
C



Thus, the system of singular integral equations must be solved under the
conditions (22) and (23). Fom the function-theoretic examination of the
integral equations (20) it can be shown that the unknown functions g, h and
p are of the following form [2]:

F.(t) F,(t) F.(r)
glt) = ———— , h(t) = e, p(r) = 3

(b-t)*(t-a)? (b-t)*(t-a)* (d-r)*(r-c)?

(24a-c)

where Fis Fy and Fy are bounded functions. The solution of (20) subject to
(22) and (23) may easily be obtained by using the numerical method described

in [3].

3. Stress Singularities

After solving (20) the Modss | and II stress intensity factors ky and
Ky at the crack tips x=a and x=b, y=0 which are defined by

k](a = |lim v2{a-x) oy (x 0) , k1(b) lim v2(x-b7} o (x 0) ,

X3 X-b

(a) = lim v2{a-x) oy (x,0) , kz(b) 1im v2({x-b) o (x,O) ,

X~ x=+b
(25a-d)
mey be obtained as follows:
2 . 2 .
k(@) = 73 lim v2(x=a) g(x) , ky(b) = = 3= lim v2(b=x) g(x) ,
X2 XD
ky(a) = ]—%j‘; lim v2{x-a] h(x) , k,(b) = - ]zf hm vZ{b-x) h(x
X3
(26a-d)

The constants k; and ko are related to the asymptotic stress fields near
the crack tips through the well-known expressions (see, for example, [4]
and [5]). However, not so well-known is the asymptotic behavior of the
stress fields near the inclusions having sharp edges. From (24c) and (7d)
it is seen that the shear stress Opng has a square-root singularity at the
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tip of the inclusion. However, if one is interested in crack initiation
around such singular points, one needs to know the direction and the magni-
tude of the maximum local cleavage stress, This, in turn, requires the
investigation of the complete asymptotic stress field near the singular
points. By using the basic form of the solution of the related density
functions given by (24) and going back to the original stress expressions,
the asymptotic stress fields may be developed by following the general
techniques described in, for example, [6] or [7].

In an elastic medium containing an elastic line inclusion under plane

strain or generalized plane stress conditions, the asymptotic analysis gives
the near tip stress field as follows [7](*).

- Ky
o (r,8) = — CO0S 5
YY /2r
k
3t 1 8
Oy (F28) = - > /Z_rcos 5
~ Pad k] . e
Oxy(r,e) = - :ESI” 7 (27a-c)
r

where x,y and r,6 are the standard rectangular and polar coordinates, the
origin of coordinate axes is at the inclusion tip and the inclusion lies
along the negative X axis or along e=m, r>0. Equations (27) suggest that
similar to crack problems one may define a (Mode I) "stress intensity factor
in terms of the (tensile) cleavage stress as follows:

ky = 1im v2r o_ (r,0) . (28)
1 r-0 Yy

From (7) by observing that (at the right end of the inclusion)

oxy(l",+7r) - Oxy(?‘,-ﬂ) = -p(r) , (29)

) Note the misprints in (4.6) of [7].



in terms of the function p(x) Ky may be expressed as

.1 k-1
ky = -Tim /27 p(r) (30)
1 rs0 2 tT

It should be noted that in the case of flexible elastic line inclusions
there is no antisymmetric singular stress field. For example, in a plane
under pure shear (o;’y) parallel to the inclusion, the perturbed stress field
is zero. Physically this of course follows from the fact that the normal
strain (exx) parallel to the plane of shear is zero.

Similarly, for a rigid line inclusion (i.e., for an inclusion having
infinite bending as well as tensile stiffness) it can be shown that for
small values of r the asymptotic stress field is given by

- 1 8 xtl . 8
oYY(r,e) | (k, cos 5 +==k, sin 3) ,
= 1 ,_ 3+ 8 _3-x 6
oxx(10) = B (= T3 k) cos 5 +7k, sin 3) (31a-c)

=1 kD in £ 9
cxy(r,e) = 757(' - k1 sin > + k2 CoS 2)

Again, the stress intensity factors ky and k, are defined in terms of the
tensile and shear cleavage stresses at =0 plane as follows:

k, = lim v2r o (r,0) , k, = lim /2r o_ (r,0) - (32a,b)
L ¥y N Xy

A in the crack problems, the antiplane shear component of the asymp-
totic stress field around flat elastic and rigid inclusions is uncoupled.
Defining a Muk III stress intensity factor by

ky = Tim v2r o__(r,0) , (33)
3 o0 Xz

the asymptotic stress field ney be expressed as

-10-



ks
Xz(r,e) —— CO0S
/ar (34a,b)

(r,8) S s
o} r.o — SINn
yz 27

¢

N

o

Nojo

. . . . *
where again the inclusion lies along e=r plane( ).

4. Crack-Incl usion Intersection

Analytically as well as from a practical viewpoint intersection of
cracks and inclusions presents some interesting problems. In these problems
the point of intersection is a point of irregular singularity with a power
other than 1/2. BEwen though the general intersection problems for an arbi-
trary value of & may be treated in a relatively straightforward manner, in
this paper only some special cases will be considered.

4.1 Thecaseofe:-g-,azo,czo

In this case the system of singular integral equations (20) becomes

'ﬂ dt‘“?f vy - Trerylo(t)dt = F1(x) , (0oxb)

d
11([ 'i_ldt T [[WTZ ‘Q—Z]P(t) = fZ(X) , (0<x<b) ,

o

(*)Note that in this case if the remote stress is decomposed into o}z and

c;z, the perturbed stress field due to o yz would be zero, For the cleavage
plane & the shear cleavage stress may be written as 7, (r,e)=c~xzsine-cy2cose=

—(k3//2r)s1'n(e/2), 8, = e+n/2, indicating that e=*r/2 Is the maximum cleavage
planes .
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1 b ct cytr? 1 b car c rt?
T f gz *+ (errrydotet + 1 [ Teder - (ebmyein(tet
0 0
d c.
# 1 BEL gt + 2 [(e-rip(t)at = f3(r) , (0erd), (35a-c)
0 0
where
= 3te =1 = ule-1)
¢ ° 4y 2 u '’ €3 ’
(36)
oo - r(I) (ke
4 k > b 4ASKuS
and f,, f, and fy are known input functions (see, for example, the right

hand side of (20)). Note that aside from the simple Cauchy kernels, (35)
has kernels which become unbounded as the variables (t,x,r) approach the
point of irregular singularity (x=0=t=r). Thus, defining the unknown func-
tions by

Fo(t) Fo(t) F.(t)
(0) = — " n(t) = —2, p(t) = — |
° t%(b-t) * £%(b-t)"2 P t%(c-t)83
O<Re(a,sk)<1, (k=1,2,3) , (37a-c)

and by using the function-theoretic technique described in [3], the charac-
teristic equations for B1» Bos Bg and o« may be obtained as follows:

cotrg, = 0 , (k = 1,2,3) (38)
by cos?ma - (b2+8a-b3a2)cos2 %%

T R
—(b4-b5u+b3a2)s1n s (39)

where
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o
1

b

3

8/ (1+) , by = 2(3+e)(e-1)/(x41)

8/(x+1) , by = 2(3-x) , by = 16/(1+)

(40)

Note that the properties of the inclusion (as expressed by the constant Cg
in (36)) enter the integral equations (35) only through a Fredholm kernel
and, therefore, have no influence on the singular behavior of the solution,

and « is dependent on k or on the Poisson's ratio of the medium only.

From

(38) it is seen that the acceptable roots are B = 0.5, (k= 1,2,3). The
numerical examination of (39) indicates that in this special case of ¢ :%-
VWe have 0.5<a<1, meaning that the stress state at r=0=x has a stronger singu-

larity than the conventional crack tip singularity of 1/vr.

This may be

due to the fact that in this problem two singular stress fields are combined

at r=0,

has two roots in O<Re(a)<l and both are real,

Table 1 for various values of the Poisson's ratio.

Table 1. Powers of stress singularity « for a crack and
an inclusion: a =0, ¢ =0, ¢ =a/2 (Fig. 1).
plane strain plane stress
v - 70.]—7 %y oy ay
0.0 0.63 627093 0 0.63627093 0
0.1 0.64489401 0.09571474 0.64408581 0.08990596
0.2 0.65405762 0.14825371 0.65095281 0.1 3249000
0.3 0.66352760 0.18953334 0.65695651 0.161 76440
0.4 0.67270080 0.22567265 0.6621 7253 0.18404447
0.5 0.67996342 0.26027940 0.66666667 0.20196313

Also, it turns out that for 0<v<5 the characteristic equation (39)
These roots are given in

The stress intensity factors at the crack tip x=b, y=0 and at the end
of the inclusion x=0, y=d may be obtained by using the relations (26) and

(30).

factors are defined;

-13-
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=i /_ @ -U, ’
k1(0) >I<Lnjo 2 X cyy( 0,0)
(41a,b}
= i @ -
k2(0) )|(I_I110 V2 x axy( 0,0) ,

for the crack, and

,(0) = lim 22y p(0,+0) (42)

y-+0

for the inclusion.

m

4.2 The Special Case of & =5, C=-d a=0.

In this case the problem is further simplified by assuming "symmetric"
external loads (for example, c¥y=0 in (20)). Thus, the plane of the crack
is a plane of symmetry, h(x) = 0, and (20) would reduce to

b
c,t c,tx?
H i ae + gf lezexz = eomyelP(t)dt = f1(x), (0x<b) |

T te+x<
0 0]
b d
t c,ty?
1 [ o3 2 L1, L
;‘f [tzfyz + (iz+y2)2]9(t)dt i f [t-y * tay
0 0
+ cgh(t-y)Ip(t)dt = fily) » (O<y<d) , (43a,b)

where, again the input functions f, and f, are known and, for example, are
given in (20) (with o:y = 0) and the constants c, ,...,c; are defined by (36).

By defining

() Gt () —————B—Gz(t) 0<Re(asB1485)<] (44)
B, = s U<re(a, ’ <

’ t*(b-t)#1 P t*(d-t)"? Lz

from (43) it may be shown that

cotg, = 0 , (k=1,2) , (45)
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COSvra-(C3 + —;— C4a)(c-l -5 Cza) =0 (46)

From (45) it is seen that B, = 0.5. A C ose examination of (46) shows that
it has only one root for which O<Re(a)<1  Furthermore, this root turns out
to be real and highly dependent on the Poisson's ratio (see Table 2). The
characteristic equation (46) and the roots given in Table 2 are identical
to those found in [8] where an infinitely long stringer in cracked plate
was considered.

Table 2. Power of stress singularity o at the crack-inclusion
intersection for e=n/2, c=-d, a=O and for symmetric

loading.
C
v plane strain plane stress
0 0 0

0.1 0,10964561 0.10263043
0.2 0.17432137 0.15468088
0.3 0.22678790 0.19132495
0.4 0.27392547 0.21 972274
0.5 0.31 955800 0.24288552

In this problem, too, the stress intensity factors for the crack and
the inclusion may be defined as in (41) and (42).

4.3 The Special Case of ¢=n, a=0, c=0

In this case the crack and the inclusion are on the X axis and occupy
(y=0, O<x<b) and (y=0, -d<x<0), respectively. Restricting our attention
again to the symmetric loading for which h(x) = 0 and observing that for
the variables along the inclusion r'=-x, LN -t, p(ro) = -pX(t), the
integral equations of the problem may be expressed as
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1 i g(t) 1 k-1 ° px(t)
;r‘ t"‘x dt - ; 4u f t-x dt = f'l(x) 3 (O<X<b)
0 -d
b X
€3 [ g(t) 11 P {t) cr
‘Tr‘f t-x dt + p [d :-X dt - [dpx(t)dt = f3(x), (-d<x<0) (47a,b)
0] - -

where the constants €5 and cg are defined by (36) and the known functions
f, and f, are given by the right hand sides of (20a) and (20c) (with c:y=0).
If ve now let

Hy(t)

M) (t) O<Re(a,B;,8,)<1 (48)
—F% s = ’ <R€{a, Y < ’
bty X (-t)%(t+d)"2 v

a(t) =

from (47) the characteristic equations for «, g, and 8, may be obtained as
fol 1ons :

cotng, = 0 , (k=1,2), (49)
1.2

cos2ra = - (f—l) . (50)
2V

Equation (49) again gives 8, = 8, = 0.5. From (50) it may easily be seen
that o is complex and its value for which 0<Re{a)<1 is found to be

o= %+ (1205 | (51)
This value of « turns out to ke identical to the power of singularity for a
perfectly rough rigid stamp with a sharp corner pressed against an elastic
half plane having « as an elastic constant [2] (e.g., c = 3-4v for the plane
strain case). At first this result may be somewhat unexpected. However,
upon closer examination of the problem first, from (47b) it nmay be seen
that the elasticity of the inclusion (i.e., the term containing the constant
cg) has no effect on the nature of the stress singularity. Thus, if one
assumes the inclusion to be inextensible, for the symmetric problem under
consideration it can be shown that the conditions in the neighborhood of the
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crack tip x=0, y=0, for example, for y<0, are identical to the conditions
around the corner of the stamp in the elastic half plane occupying y<0.

It, therefore, appears that for the elastic inclusion collinear with a
crack, the stress state around the common end point would have the standard
complex singularity found in the rigid stamp problem.

5. The Results

The crack-incl usion problem described in previous sections is solved
for a uniform stress state c‘;’j, (i,3=x,y), away from the crack-inclusion
region. For simplicity the results are obtained by assuming one stress com-
ponent (ojx or O';Y or c;y) to be nonzero at a time. The solution for a
more general loading may then be obtained by superposition. Ewen though
the stress state everywhere in the plane can ke calculated after solving the
integral equations (e.g., (20)) and determining the density functions g,

h, and p, only the stress intensity factors are given in this section. For
nonintersecting cracks and inclusions the stress intensity factors defined

by (26) and (28) are normalized as follows:

) k.(x:)
= ____1__.;__. i= . .= . S A *©
k'l(XJ) 0: — s (1 (1,2)’ XJ (asb)9 Ga (nyso'xxﬁo'xy))a (52)
for the crack and
' - k'i(rj) _ 1= @
k](rj) = ko s kO = m oy y(d-c)/? ,
(r‘j = (c,d) , o: = (o;y, O:X, c:y)) (53)

for the inclusion.

Referring to Figure 1, for c=a, d=b, and (b/a)=5 the effect of the angle
¢ on the stress intensity factors is shown in Table 3. These results are
given for two values of the stiffness parameter v defined by (21), namely
v=0 (the inextensible inclusion) and y=10.
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Table 3. Normalized stress intensity factors in a plane containing a
crack and an inclusion subjected to a uniform stress state %
away from the crack-inclusion region (c=a,d=b,a=b/5,Fig. 1).

8

y | k' 1" 30° 60" 90" 120° 150" 180"

(a) Oyy#oaaxx::o’ Xy

ki(a) .8905 | 1.0083 | 1.0298 | 1.0049 .9912| 1.0001 | 1.0076
ko(a) | -.2152 | -.0098 | -.0661 | -.0830| -.0367| .0004 .0000
0 kij(b) | 7.0221 .9967 .9570 .9617 .9857( 1.0001 | 1.0033
ky(b) .4327 | -.0065 | -.0002 .0007| ~-.0001 .0001 .0000
ky(c) .9570 | -.3273 |-1.1324 |-1.3970| -.8879| -.0310 . 3850
ki(d) | .8012 .1552 | -.6989 |-1.1134| ~-.7336| -.0428 4320

k;(a) .9691 .9999 | 1.0016 .9988 .9978| 1.0000 | 1.0014
ké(a) -.0517 | -.0047 | -.0136 | -.0153| =-.0066| .0001 .0000
10 ki(b) .9862 .9997 .9919 .9928 .9973| 1.0000 | 1.0006
ks(b) .0742 | =.0020 .0001 .0005 .0002| .0000 .0000
ky(c) 2619 | -.1277 | -.3979 | -.4735| ~-.2989| -.0220 .1106
ki(d) | -.0269 .1001 | -.1848 | -.3269| -.2177] 0171 .1354

(b) =0

Xy
ki(a) L1237 .0704 | -.0034 | -.0034 .0008

-.0117 | -.0203

ko(a) .2355 .0122 .0052 .0310 .0036| -.0161 .0000

0 ky(b) | -.0806 | -.0365 .0036 .0142 .0014| -.0072 | -.0086
ky(b) | -.5321 | -.0740 .0001 .0001 .0000| -.0003 .0000
ki(c) -1.1068 | -.6949 .0766 .4620 .0774| -.6988 | -1.0877
ki(d) |-1.4785 | -.6941 .0772 . 4644 .0776] -.6994 | -.0884
ki(a) .0385 .0106 | -.0005 | -.0001 .0002| -.0023 | -.0038
ks(a) .0587 .0004 .0010 .0056 .0006| .0029 .0000

" ki(b) -.0252 | -.0068 .0007 .0026 .0003| -.0013 | -.0016

ky(b) | -.1128 | -.0030 .0000 .0000 .0000| .0000 .0000
ki(c) | -.3440 | -.2152 .0239 .1432 0239 -.2151 | -.3346
ky(d) | -.3885 | -.2154 .0239 L1434 .0239| -.2151 | -.3347
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Table 3 - cont.

v | k' 1" 30" 60" 90" 120° 150" 180"
I ) oy, # 0
ki(a)| .1289 | .1428 | .0669 | .0028 | .0134 | .0223 {0.0000
ki(a)| 1.0849 | 1.0180 | .9054 | .9950 | 1.0599 | 1.0304 |1.0000
o |ki(b)| .1641 | -.0754 | -.0670 |-.0021 | 0.0231 | .0136 |0.0000
ky(b)| 1.4055 | .9685 | .9974 | .9995 | 1.0005 | 1.0005 |1.0000
ki(c)| -1.0246 |-1.6348 |-1.3085 | .0533 | 7.3767 | 1.3606 [0.0000
| |ki(d)|_2.0539 |-1.3808 |-1.4661 |-.1076 | 1.2735 | .3117 | .00Q0
ki(a)| .0858 | .0198 | .0100 | .0010 | .0032 | .0043 | .0000
ky(a)| 1.0527 | .9967 | .9826 | .9992 | 1.0108 | 1.0054 |1.0000
10 |ki(b)|  ,1044 | -.0140 | -.0121 |-.0003 | .0043 | ,0025 | .0000
ky(b)| 1.1662 | .9929 | .9994 | .9998 | .9999 | 1.0000 |1.0000
ki(c)| -.6916 | -.5492 | -.3731 | .0557 | .4513 | -.4316 | .0000
ki(d)| 1.1639 | -.4179 | -.4533 |-.0342 | .3912 | -.4029 | .0000
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Some sample results for an inclusion collinear with a crack (i.e,
for 6=0) are given in Table 4. Note that for this configuration under the

Table 4. Normalized stress intensity factors for an inclusion
collinear with a crack. Relative dimensions: =0,
d-c = b-a, ¢ = b+s. Applied loads: o3, (i,3=x,y)
(Fig. 1). J
w K S = (b-a)/100 S = (b-a)/2
Uij

y=20 y =10 y=o0 y =10
ki(a) -0.0202 -0.0040 -0.0019 -0.0004
oW ki(b) -0.1338 -0.0300 -0.0027 -0.0005
X ki(e) -1.0482 -0.3296 -1.0889 -0.3347
ki(d) -1.0845 -0.3345 -1.0889 -0.3347
ki(a) 1.0047 1.0006 1.0008 1.0002
o ki(b) 1.0200 0.9987 1.0011 1.0002
vy ki(c) -0.0861 -0.1571 0.4559 0.1397

loads shown in the table, that is, for o, and o;vx, because of symmetry
the Mode II stress intensity factors kz(a) and k2(b) are zero. Also, for
the shear loading o*:y it is found that ky(a) = 1, ké(b) =1 and kq(a) =
k](b) = k](c) = k](d) = 0. This follows from the fact that in the cracked
plane under pure shear c;y the strain component eXX(X,O) IS zero and
hence an inextensible inclusion on the X axis would have no effect on the
stress distribution.

Another special configuration is an inclusion parallel to the crack
for which Table 5 shows some sample results. In the two special con-
figurations considered in Tables 4 and 5 the effect of the crack-inclusion
interaction on the stress intensity factors does not seem to be very sig-
nificant.

The results for an elastic medium for which xz plane is a plane of
symmetry with respect to the crack-inclusion geometry as well as the
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Table 5. Noma ized stress intensity factors in a plane containing an
inclusion parallel and equal in length to a crack, both symmetri-
cally located with respect to the y axis. The crack is along the
x axis and H is the distance between the crack and the inclu-
sion iny direction (Fig. 1).

a?- o H = b-a H = 10(b-a)

J y = O vy = 10 y =0 Y = 10
ki(a)=k{(b) -0.0182 -0.0070 -0.0007 -0,0002

:’;x ky(a)=-ky(b) 0.0281 -0,0011 0.0006 0.0000
ki(c)=k}(d) -1.0834 -1.0887 -0.0683 -0.0683
ki(a)=k(b) 1.0063 1.0028 1.0004 1.0001

5:(°Y ki(a)=-k;(b) -0.0060 0.0004 -0.0001 0.0000
ki(c)=ky(d) 0.3917 0.4387 0.0411 0.0276
ki(a)=-kq(b) -0.0042 0.0000 -0.0002 0.0000

”Qy ko(a)=k;(b) 0.9965 1.0000 0.9998 1.0000
ky(c) -0.1131 0.0033 -0.0123 0.0004

ki(d) 0.1 129 -0.0052 0.0123 -0.0006




applied loads are given in Figures 2-12. .In this example the crack is per-
pendicular to the inclusion and the external load is a uniform tension par-
allel or perpendicular to the crack and away from the crack-inclusion region
(see the insert in the figures). The results shown in the figures are self-
explanatory. However, the solution also has some unusual features among
which, for. example, one may mention the tendency of the crack tip stress
intensity factors k'(a) and k'(b) to "peaking" as y decreases and as d/2
increases (where 2d and 2¢ are the lengths of the inclusion and the crack,
respectively and y = 0 corresponds to an inextensible inclusion).

The results for the limiting case of the crack touching the inclusion
are given in Figures 8-12. In this case at the singular point x=0, y=0
the stress intensity factor k](a) and the normalized stress intensity factor
k]‘(a) are defined by

ky(a) = llﬂ-ﬁ xacYY(x,O) , (x <0) , (54)

ky(a) = k(a)/o7;/2 , (i=(xy)5 2=b/2) (55)
where the power of singularity « is given in Table 2. The results shown
in Figures 8-12 are obtained for v = 0.3.

The stress intensity factors for the other symmetric crack inclusion
problem, namely for the problem in which y axis is the line of symmetry
with regard to loading and geometry are given in Figures 13-28. In this
problem a=-a, b=2, d>c>0 and the external load is either c;Y or o;X (see the
insert in Figure 13). Note that the figures show the crack tip stress
intensity factors at x=a=-2 and k, (b)=k](a) » ky(b)=-k,(a). Generally the
magnitude of kl(a) and kz(a) seem to increase with increasing length and
stiffness of the inclusion (i.e., with increasing (d-c)/22 and decreasing
y = p(l+Ks)/Asus(1+K), where u. is the shear modulus of the inclusion).
Also, as expected, k;(c) and kq (d) describing the intensity of the stress
field at inclusion ends tend to increase as the stiffness of the inclusion
increases. However, their dependence on the relative length parameters is
somewhat more complicated (see, for example, Figure 16 for change in beha-
vior of the variation of k,(d) at (d-c)/22=5). Figures 13-20 show the effect
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of the inclusion length for constant crack length 2¢ and constant distance
¢ (Figure 13). The effect of the distance ¢ for constant inclusion and
crack lengths is shown in Figures 13-28.

The results of the nonsymmetric problem showing the effect of the rela-
tive location of the inclusion are shown in Table 6. Referring to Figure 1,
in these calculations it is assumed that e = -g— , d-c = 22, ¢/22 = 0.1 and
a/2s is variable.

Finally, the stress intensity factors for the crack-inclusion inter-
section problem considered in Section 4.1 are given in Figures 29-43.

The normalized stress intensity factors shown in these figures are defined
by (see (41), (52) and (53))

k;B -1 1im /2({x-b) ¢ (x 0) ,
13/_ x=+b

kyg = —=—— Tim vZ(xBT o, (x,0) ,
o; /% xb Y

1 . o
ki = 1im A x* ¢ (-0,0) .
1A ors/T X+=0 vy

i]
kpp = —— 1im /2 % (-0,0) , (56)
eVt X0 Y
1
kg = T}‘ Tin /2(7-4) o, (0,y) ,
0 y~d

_ 1=k o
ko = 2(T+aY 15 792

In this case too, generally the magnitude of the stress intensity factors
increases with increasing length and stiffness of the inclusion. However,
since the crack and the inclusion are located in each other's "shadow",
the relative dimensions seem to have considerable influence on the vari-
ation as well as the magnitude of the stress intensity factors.
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Table 6. The effect of the relative location of inclusion on the stress

intensity factors; € = n/2, (d-c)/22 = 1, ¢/2% = 0,1 (Figure 1).

5] 5 | k@) | kyla) ki(b) | ky(b) | kile) | kj(d)
0.1 -0.0202 0.0490 0.0161 0.0003 0.4450 0.4471
0.0 -0.1033 0.0425 0.0133 0.0039 0.4192 0.4402
oy |-0-1 | -0.0849 | -0.0044 | 0.0076 | 0.0081 | 0.3538 | 0.4285
-0.3 -0.0349 | -0.0308 0.0023 0.0060 0.3348 0.4163
-0.5 -0.0363 | -0.0114 | -0.0363 0.0114 0.3195 0.4109
+0.1 1.0458 | -0.1396 0.9545 0.0012 | -1.5217 | -1.0543
0.0 1.2652 | -0.1090 0.9667 | -0.0078 | -1.2922 | -0.9497
d:(VY -0.1 1.1548 0.0064 0.9865 | -0.0150 | -0.5345 | -0.8136
-0.3 1.0448 0.0294 1.0013 | -0.0102 | -0.2308 | -0.6378
-0.5 1.0313 0.0129 1.0313 | -0.0129 | -0.1959 | -0.5801
0.1 0.0098 0.9905 | -0.0033 0.9992 0.1050 | -0.1338
0.0 0.0493 0.9796 | -0.0065 0.9983 | -0.1734 | -0.1675
o:y -0.1 0.0463 1.0019 | -0.0041 0.9960 | -0.1054 | -0.1648
-0.3 0.01 23 1.0066 | -0.0007 0.9971 | -0.0236 | -0.0977
-0.5 0 1 0 1 0 0
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